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Introduction Genome Assembly and Annotation
Potato is the world's most important vegetable crop, the 3rd largest global food crop and a unique biological system Genome Assembly INNLD  conormic DNA
belonging to Solanaceae. In order to decipher the structure and function of its genes, the 840 Mb genome of potato « First draft assembly of DM based on lllumina short reads and Sanger B Frarientandinaied-and ssquendis
(Solanum tuberosum L.) consisting of 12 chromosomes is currently being sequenced by the Potato Genome Sequencing sequenced BAC-ends and Fosmid-ends (Table 1) has been generated Ul of libraries with variant insert sizes.
: . : : : | | ' '
Consortium (PGSC).The PGSC was initiated through Wageningen University and Research Centre and currently by using the short reads assembly software - SOAPdenovo (version - -
comprise member institutions from 15 different countries. 1014) developed by BGI (Figures 4 and 5, Table 2) = 150~500 bp 2~10 Kb
Rationale » Assembly of RH is progressing using NGS, WGP and Sanger data _
Potato is a highly heterozygous tetraploid that suffers severe inbreeding depression upon self-polination. Despite its (Table 3) U
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importance as a food crop throughout the world, the genetics of many potato traits is poorly understood and is complicated by * Integration of the two genome assemblies will generate three virtual N S = o overlap using de Bruijn
its polyploid genome. Many important qualitative and quantitative agronomic traits are poorly understood, genes affecting molecules corresponding to the three haplotypes (Figure 6) | | graph
these traits remain largely undiscovered and QTL locations are often imprecise.The sequencing of the potato genome will | Remove erroneous connections and
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provide a major boost to gaining a better understanding of potato trait biology and will underpin future breeding efforts. a ly )
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* Sequence the complete genome of potato by early 2010 * More than 95 % of genes plus regulatory regions * Three gene-prediction methods (Figure 7) applied to annotate ____i ___ “S"ngumm—" >>—<< —c<g>o——
- Build capacity in countries with less developed plant genomics ||« More than 95 % of ESTs (>250 bp, 10 Ns) protein-coding genes |'
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infrastructure More than 50 % of the genome anchored to chromosome Consensus gene set (Table 4) built by merging all genetic resources e T ————
» Form the basis of a research network for the scientific - Complete set of annotated genes and prediction approaches 53 " And oulput contigs
e
exploitation of the sequence data in the post-genomics era » N50 contig size > 15 kb - Validation by deep transcriptome profiling and RNAseq analysis ‘U Scaffold construction
« N50 scaffold size > 0.5 Mb el e2 e3 e4
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Started in 2005/6 taking a heterozygous diploid potato clone (RH89-039-16) and adopting a chromosome by construction - p3a(:?r:::st:fs)°82‘|?:'i:)el(-) Figure 4: Schematic overview of the assembly algorithm developed by BGl
Chromosome and BAC by BAC Sanger sequencing strategy : :Id
carrolas
RH was chosen because it is the parent of the UHD mapping population with a very extensive genetic map I
Sequencing started with anchored RH seed BACs, involved 6x coverage and ~ 800 - 1000 BACs per chromosome - Gapfilling < T T O ST TR
libraries
Employed RH physical map to choose tiling path across each chromosome and individual PGSC partners were assigned v
. Super-scaffold :/i\é(sasri-zs 200 bp to 10 kb 65x coverage
different chromosomes construction
\1, Fosmid library (~35kb) 190K Fosmid -end
. L. . sequences
Problems With Initial Sequencing Strategy Super-scaffolds
BAC library (>100 kb) 160K BAC -end sequences
Significant resource and capability development for potato genome sequencing but also had following drawbacks:
Figure 5: Flowchart of DM genome assembly Table 1:Sequencing efforts for DM line. Sequencing methods being employed
- Sanger based BAC by BAC approach was slow are listed alongwith estimated coverage of the ~840 Mb potato genome
- Heterozygosity of RH limited the progress of physical mapping and complicated the assembly of the genome (Figure 1a)
- Large gaps were present in physical map reducing number of seed BACs
» Only 30-40% of genome covered by the map and average contig tile path was only 2.5 BAC clones
* Disparity in chromosome sequencing progress st Ty,
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With the advent of Next Generation Sequencing (NGS) technologies, Whole Genome Shotgun (WGS) sequencing has Sk Tt 31.4 06,446 386.6 524 13185 167
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become more feasible and economical (data/$) Ao e U - 2
. : : . ; . : - - - Table 2: Statistics of DM assembly
PGSC reviewed RH sequencing related issues and adopted a revised strategy which mainly involved: RS9 0039 16 DMT-3 >16R44
- Additional use of highly homozygous genotype (Figure 1b and 2) to get around heterozygosity and assembly problems of RH
(Figure 1a)
» Use of NGS technologies (in addition to Sanger sequencing) to generate WGS sequence of potato Figure 6: An overview of the DM and RH resource sharing and genome assembling Sequenced  In Progress Sanger Sequencing llumina Runs ~ Roche/454
strategy. Integration of the two sequencing strategies will yield three comparable Clone Runs
» Delegation of tasks according to capability and available resource, rather than a chromosome by chromosome approach haplotypes RH WGS + Long Jump 10x coverage
WGS 120 x coverage
BAC library 150K BAC -end sequences
0 0 + 2K BACcl ones
1 0 Random sheared 120K BAC -end sequences
l l BAC library (~100 kb)
Assembled genomic sequences
Whole Genome 54K BACs with 34 tags on
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\ / EST /cDNAf ~3400 contig physical map
sequences o
\ — - Bt 11 species in Table 3:Sequencing efforts for RH line. Sequencing methods being employed
/ — — solanum are listed alongwith estimated coverage of the ~840 Mb potato genome
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Figure 1:(A) Depiction of heterozygosity and sequencing issues with diploid genotype RH. Each chromosome has two versions (=‘phases’) ‘0’and ‘1'; WGS and
BACs sequence data come from two chromosome versions ‘0’and ‘1" and, consequently, RH genome assembly is complicated and requires two separate tiling Preliminary
paths; (B) Homozygous doubled monoploid genome.Each chromosome has same version (only 1 phase and no phase issues). WGS and BACs sequence data geneset 3
come from same chromosome versions and, consequently, resolves DM genome assembly process { N =300 ETE
Figure 2:The homozygous genotype introduced for sequencing in the revised strategy. Doubled monoploid (DM) homozygous potato (S. tuberosum Phureja GLEAN 329 1144 37,623
Group) clone DM 1-3 516 R44 (CIP 801092). The DM phenotype (A) and tubers (B) are shown above. DM flowers well and can be used as a female parent in @ Homology based 375 1896 71,092
crosses with most diploid potato germplasm [Paz MM, Veilleux RE (1997) Genetic diversity based on randomly amplified polymorphic DNA (RAPD) and its l B De riovo prediction
relationship with the performance of diploid potato hybrids.J. Am. Soc. Hort. Sci. 122: 740-747] Final predicted gene set EST/cDNA based 546 128.0 69,888
881 74.9 65,989
Figure 7: Flowchart of DM gene annotation Table 4: Gene annotation from DM genome

Mapping/Anchoring
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Ongoing and Future Steps

» Aim to anchor >50 % of the genome assembly to a genetic map, |SNP markers: 1920 SNPs (5 lllumina Goldengate OPAs)
this is supplemented by an improved physical map of RH using | designed for lllumina BeadXpress platform, uniformaly
Whole Genome Profiling'and the development of an anchored | cover (every ~150 kb) the entire DM genome, uniquely

* Increase scaffold size and generate hybrid assembly using Solexa, Roche 454

and Sanger data

genetic reference map based on DM J2 SR RIS A C S TEL e SR - Quality assessment of the DM assembly by Sanger-sequenced DM BACs
- Backcross between DM and heterozygous DI (CIP No.703825),a |data aligned to DM genome assembly (courtesy - Robin + Anchor genome assembly to a genetic map
heterozygous diploid S. goniocalyx clone, comprise ~200 A S B SEIEN P RE)SEY - Develop informatics tools to integrate resources (physical map, genome

progeny clones, generated by International Potato Center, Peru
- Scaffolds are being anchored to a genetic map with different SSRs:550 SSR markers designed directly to DM scaffolds
types of sequenced markers - SSRs, DArT, SNPs

sequence, marker/gene data)

« Complete potato genome sequence by early 2010

DArT data: Discovery arrays with over 30k probes,

Benefits

discovered 7500 candidate markers, DArT markers have

Additional resources: 148 Sequence Tagged Markers (STM), knownto | | been sequenced and these will provide direct

map to regions spanning all 12 chromosomes, ~60 Ste markers, anchoring to scaffolds, DM DArT map (~500 - 700

currently being mapped in an SH x RH population unique markers) constructed (Figure 3)

- Radical effects on efficiency of potato breeding
- Overcome many negative aspects of potato as a genetic system

- Enhance our ability to identify the desirable allelic variants of genes underlying

Important quantitative traits in potato
- Facilitate gene isolation and allow molecular geneticists to use candidate gene
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